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ABSTRACT 
In this paper a two graded manpower system in which depletion occurs due to policy and transfer decisions which 

form respectively two independent sources of depletion is considered. A stochastic model is constructed and using a 

univariate Max policy of recruitment, the variance of time to recruitment is obtained when inter-policy decision 

times form a sequence of exchangeable and constantly correlated exponential random variables. Analytical 

results for the variance of the time to recruitment and other related performance measures. 
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      INTRODUCTION 
Depletion of manpower occurs whenever announcing a new policy decisions (this form one source for depletion) in 

any organization. Transfer decisions which are non-recurrent in nature may also lead to depletion of manpower, 

thereby forming a second source for depletion. Frequent recruitment is costlier and hence recruitment is postponed 

to a point called threshold, a maximum allowable loss of manpower, beyond which the organization cannot run as 

usual. Consequently, a suitable decision on making recruitment is to be designed in order to offset the depletion of 

manpower.  Elangovan et.al [6] have initiated the study on recruitment problem for a single grade manpower 

system with two sources of depletion and obtained the variance of time to recruitment using univariate CUM 

policy of recruitment when the loss of man power in the organization due to the two sources of depletion, inter-

policy decision times, inter-transfer decision times, and  the breakdown threshold for the cumulative loss of man 

power in the organization are independent and identically distributed exponential random variables. Usha et.al[9] 

have studied the work in[6] when inter-policy decision times are exchangeable and constantly correlated 

exponential random variables. In [1] and [2] Dhivya and Srinivasan have extended the work in [6] for a two grade 

manpower system according as the inter-policy decisions and inter-transfer decisions form the same or different 

ordinary renewal process respectively. In [3], Dhivya and Srinivasan have studied their work in [1] and [2] using 

univariate max policy of recruitment. In [4], Dhivya and Srinivasan have studied their work in [1] when the policy 

decisions are classified into two types according to the intensity of attrit ion.  In [5], Dhivya and Srinivasan have 

studied their work in [1] when inter-policy decision times are exchangeable and constantly correlated exponential 

random variables. The objective of the present paper is to study the problem of time to recruitment in [5] using 

univariate Max policy of recruitment. 

 

MODEL DESCRIPTION 

Consider an organization taking decisions at random epoch (0,∞) and at every decision making epoch a random 

number of persons quit the organization. There is an associated loss of manpower if a person quits. It is assumed that 

the loss of manpower is linear and cumulative. For i=1,2,3…,let 𝑋𝑖 be a continuous random variables representing 

the amount of depletion of manpower(loss of man hours) caused due to the ith policy decision in the organization. It 

is assumed that 𝑋𝑖form a sequence of independent and identically distributed random variables with distribution 

𝐺(. ). Let 𝑋̅𝑚be the maximum loss of manpower due to the first m policy decisions in the organization. For 

j=1,2,3…,let 𝑌𝑗 be a continuous random variable representing the amount of depletion of manpower in the 

organization caused due to the jth transfer decision. It is assumed that 𝑌𝑗 form a sequence of independent and 

identically distributed random variables with probability distribution function 𝐻(. ). Let 𝑌̅𝑛 be the maximum loss of 

http://www.ijesrt.com/


[Dhivya, 4(7): July, 2015]  ISSN: 2277-9655 

                                                                                                    (I2OR), Publication Impact Factor: 3.785  

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [918] 
 

manpower in the organization due to the first n transfer decisions. For each i and j, 𝑋𝑖 and 𝑌𝑗 are statistically 

independent. Let 𝐶 (𝐶 > 0) be the constant breakdown threshold level for the depletion of manpower in the 

organization.   Let the inter-policy decision times be constantly correlated exchangeable and exponential random 

variables with distribution 𝐹(. ), probability density function 𝑓(. )and parameter 𝑎, Let 𝐹𝑚(. )be the distribution of 

the waiting time upto m policy decision times.  Let the inter-transfer decision times be independent and identically 

distributed exponential random variables with distribution 𝑊(. ), probability density function 𝑤(. )and mean 
1

𝜇2
(𝜇2 > 0). It is assumed that the two sources of depletion are independent. Let 𝑊𝑛(. ) be the n-fold convolution of 

𝑊(. ) with itself. The univariate Max policy of recruitment employed in this paper is stated as follows: 

Recruitment is done whenever the maximum loss of man hours in the organization exceeds the constant 

threshold C. 

 Let T be the random variable denoting the time to recruitment with distribution L(.),probability density function l(.), 

Laplace transform 𝑙(̅𝑠), mean E(T) and variance V(T). Let 𝑁𝑃(𝑇) and 𝑁𝑇𝑟𝑎𝑛𝑠.(𝑇) be the number of policy decisions 

and transfer decisions taken until the time to recruitment T respectively. Let 𝑋̅𝑁𝑃(𝑇) and 𝑌̅𝑁𝑇𝑟𝑎𝑛𝑠.(𝑇)be the respective 

total loss of manpower in 𝑁𝑃(𝑇)and 𝑁𝑇𝑟𝑎𝑛𝑠.(𝑇)decisions until the time to recruitment T. 

 

MAIN RESULTS 

𝑃(𝑇 > 𝑡) = ∑ ∑ {

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑚 𝑝𝑜𝑙𝑖𝑐𝑦 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 [0, 𝑡)𝑎𝑛𝑑 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑚𝑎𝑛ℎ𝑜𝑢𝑟𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑚 𝑝𝑜𝑙𝑖𝑐𝑦
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐶  

}

∞

𝑛=0

∞

𝑚=0

 

By using laws of probability and from renewal theory [7],  

𝑃(𝑇 > 𝑡) = ∑ [𝐹𝑚(𝑡) − 𝐹𝑚+1(𝑡)]

∞

𝑚=0

∑[𝑊𝑚(𝑡) − 𝑊𝑚+1(𝑡)

∞

𝑛=0

]𝑃(max (𝑋̅𝑚 , 𝑌̅𝑛) ≤ 𝐶)                (1)                                 

where 𝐹0(𝑡) = 𝑊0(𝑡) = 1.  

 

Since 

𝑃(max (𝑋̅𝑚 , 𝑌̅𝑛) ≤ 𝐶) = [𝐺(𝐶)]𝑚[𝐻(𝐶)]𝑛                                                                                                              (2) 

From (1), (2) and on simplification we get 

𝐿(𝑡) = [1 − 𝐺(𝐶)] ∑ 𝐹𝑚(𝑡)[𝐺(𝐶)]𝑚−1

∞

𝑚=1

+ [1 − 𝐻(𝐶)] ∑ 𝑊𝑛(𝑡)[𝐻(𝐶)]𝑛−1

∞

𝑛=1

 

       −[1 − 𝐺(𝐶)] ∑ 𝐹𝑚(𝑡)[𝐺(𝐶)]𝑚−1

∞

𝑚=1

[1 −  𝐻(𝐶)] ∑ 𝑊𝑛(𝑡)[𝐻(𝐶)]𝑛−1

∞

𝑛=1

 

                                                                                                                                                                                                  (3) 

From the hypothesis we note that  𝑤𝑛(𝑡) =
𝜇2

𝑛𝑒−𝜇2𝑡𝑡𝑛−1

(𝑛−1)!
 . Therefore we find that 

[1 − 𝐻(𝐶)] ∑ 𝑊𝑛(𝑡)[𝐻(𝐶)]𝑛−1

∞

𝑛=1

 = 1 − 𝑒−𝜇2[1−𝐻(𝐶)]𝑡                                                                                                           (4) 

 From (3) and (4) we get 

𝑙(𝑡) = 𝜇2[1 − 𝐻(𝐶)]𝑒−𝜇2[1−𝐻(𝐶)]𝑡 + [1 − 𝐺(𝐶)] ∑ 𝑒−𝜇2[1−𝐻(𝐶)]𝑡𝑓𝑚(𝑡)[𝐺(𝐶)]𝑚−1

∞

𝑚=1

 

−[1 − 𝐺(𝐶)]𝜇2[1 − 𝐻(𝐶)] ∑ 𝑒−𝜇2[1−𝐻(𝐶)]𝑡𝐹𝑚(𝑡)[𝐺(𝐶)]𝑚−1

∞

𝑚=1

 

                                                                                                                                                 (5) 

The mean and variance of time to recruitment can be computed from (5) and from the result 

𝐸(𝑇) =  − [
𝑑

𝑑𝑠
[𝑙(̅𝑠)]]

𝑠=0
 and 𝐸(𝑇2) =  [

𝑑2

𝑑𝑠2 [𝑙(̅𝑠)]]
𝑠=0

. Thus we get   

𝐸(𝑇) =
1

𝜇2[1 − 𝐻(𝐶)]
−

[1 − 𝐺(𝐶)]

𝜇2[1 − 𝐻(𝐶)]
∑ 𝑓̅[𝜇2(1 − 𝐻(𝐶))][𝐺(𝐶)]𝑚−1

∞

𝑚=1

                                                                               (6) 

and                                                                                                                                                                                                     
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𝐸(𝑇2) =
2

[𝜇2[1 − 𝐻(𝐶)]]
2

 
−

2[1 − 𝐺(𝐶)]

[𝜇2[1 − 𝐻(𝐶)]]
2 ∑ 𝑓𝑚̅[𝜇2[1 − 𝐻(𝐶)]]

∞

𝑚=1

[𝐺(𝐶)]𝑚−1

+
2[1 − 𝐺(𝐶)]

𝜇2[1 − 𝐻(𝐶)]
∑ 𝑓̅′

𝑚[𝜇2[1 − 𝐻(𝐶)]]

∞

𝑚=1

[𝐺(𝐶)]𝑚−1                                                                                 (7) 

When 𝐾𝑖, 𝑖 = 1,2, … , 𝑚 are exchangeable and constantly correlated exponential random variables with correlation R, 

Gurland [8] has obtained the expression for the cumulative distribution function of the partial sum  

𝑆𝑚 = 𝐾1 + 𝐾2 + ⋯ + 𝐾𝑚 as  

𝑃(𝑆𝑚 ≤ 𝑥) = (1 − 𝑅) ∑
(𝑚𝑅)𝑖

(1 − 𝑅 + 𝑚𝑅)𝑖+1

∞

𝑖=0

𝜓(𝑚 + 𝑖, 𝑥
𝑏⁄ )

(𝑚 + 𝑖 − 1)!
                                                                                                       (8) 

                                                       

where 𝜓(𝑛, 𝑥) = ∫ 𝑒−𝑢𝑥

0
𝑢𝑛−1𝑑𝑢 and 𝑏 = 𝑎(1 − 𝑅), 𝑎 being the parameter of the exponential distribution. 

 

 

Therefore in this paper  

𝑓𝑚̅(𝑠) =
1

(1 + 𝑏𝑠)𝑚 (1 +
𝑚𝑅𝑏𝑠

(1−𝑅)(1+𝑏𝑠)
)

                                                                                                                                                   (9)  

Using (9) in (6) and (7), and on simplification we get 

𝐸(𝑇) =
1

𝜇2[1 − 𝐻(𝐶)]
−

[1 − 𝐺(𝐶)]

𝜇2[1 − 𝐻(𝐶)]
∑

(1 − 𝑅)[1 + 𝑏𝜇2(1 − 𝐻(𝐶))]
1−𝑚

1 − 𝑅 + 𝑏𝜇2(1 − 𝐻(𝐶))(1 − 𝑅 + 𝑚𝑅)
[𝐺(𝐶)]𝑚−1

∞

𝑚=1

                                             (10) 

and                                                                                                                                                                                                     

𝐸(𝑇2) =
2

[𝜇2[1 − 𝐻(𝐶)]]
2

 
−

2[1 − 𝐺(𝐶)]

[𝜇2[1 − 𝐻(𝐶)]]
2 ∑

(1 − 𝑅)[1 + 𝑏𝜇2(1 − 𝐻(𝐶))]
1−𝑚

1 − 𝑅 + 𝑏𝜇2(1 − 𝐻(𝐶))(1 − 𝑅 + 𝑚𝑅)

∞

𝑚=1

[𝐺(𝐶)]𝑚−1

+
2[1 − 𝐺(𝐶)]𝑏2(1 − 𝑅)

𝜇2[1 − 𝐻(𝐶)]
∑ (1 + 𝑏𝜇2(1 − 𝐻(𝐶)))

−𝑚

{
𝑏𝜇2(1 − 𝐻(𝐶))(1 − 𝑚(1 − 𝑅 + 𝑚𝑅)) − 𝑚

[1 − 𝑅 + 𝑏𝜇2(1 − 𝐻(𝐶))(1 − 𝑅 + 𝑚𝑅)]
2 }

∞

𝑚=1

[𝐺(𝐶)]𝑚−1   (11) 

       

Special Case 

Suppose 𝑋𝑖  𝑎𝑛𝑑 𝑌𝑗 , 𝑖. 𝑗 = 1,2,3 … ,follow exponential distribution with parameters 𝛼1and 𝛼2 respectively. 

In this case,  

𝐸(𝑇) =
1

𝜇2𝑒−𝛼2𝐶 −
𝑒−𝛼1𝐶

𝜇2𝑒−𝛼2𝐶 ∑
(1 − 𝑅)[1 + 𝑏𝜇2𝑒−𝛼2𝐶]1−𝑚

1 − 𝑅 + 𝑏𝜇2𝑒−𝛼2𝐶(1 − 𝑅 + 𝑚𝑅)
[1 − 𝑒−𝛼1𝐶]𝑚−1

∞

𝑚=1

                                                               (12) 

and                                                                                                                                                                                                     

𝐸(𝑇2) =
2

[𝜇2𝑒−𝛼2𝐶]2 
−

2𝑒−𝛼1𝐶

[𝜇2𝑒−𝛼2𝐶]2 ∑
(1 − 𝑅)[1 + 𝑏𝜇2𝑒−𝛼2𝐶]1−𝑚

1 − 𝑅 + 𝑏𝜇2𝑒−𝛼2𝐶(1 − 𝑅 + 𝑚𝑅)

∞

𝑚=1

[1 − 𝑒−𝛼1𝐶
]

𝑚−1

+
2𝑒−𝛼1𝐶𝑏2(1 − 𝑅)

𝜇2𝑒−𝛼2𝐶
∑ (1 + 𝑏𝜇2𝑒−𝛼2𝐶)−𝑚 {

𝑏𝜇2𝑒−𝛼2𝐶(1 − 𝑚(1 − 𝑅 + 𝑚𝑅)) − 𝑚

[1 − 𝑅 + 𝑏𝜇2𝑒−𝛼2𝐶(1 − 𝑅 + 𝑚𝑅)]2
}

∞

𝑚=1

[1 − 𝑒−𝛼1𝐶]
𝑚−1

                   (13) 

(12) together with (13) give the mean and variance of the time to recruitment for the present case.      

Note 

Some performance measures related to time to recruitment are presented below. 

 

1. The average number of policy decisions taken until the time to recruitment T is  

𝐸(𝑁𝑃(𝑇)) = ∫ 𝐸(𝑁𝑃(𝑡)) 𝑙(𝑡)𝑑𝑡 

∞

0

   

2. The average number of transfer decisions taken until the time to recruitment T is  

𝐸(𝑁𝑇𝑟𝑎𝑛𝑠.(𝑇)) = ∫ 𝐸(𝑁𝑇𝑟𝑎𝑛𝑠.(𝑡)) 𝑙(𝑡)𝑑𝑡

∞

0

= 𝜇2𝐸(𝑇) 

3. The cumulative loss of manpower due to 𝑁𝑃(𝑇) policy decisions is  

  

𝑋̅𝑁𝑃(𝑇) = 𝐸(𝑋𝑖)𝐸(𝑁𝑃(𝑇)) = 𝐸(𝑁𝑃(𝑡))[𝐸(𝑋𝐴𝑖) + 𝐸(𝑋𝐵𝑖)] 
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4. The cumulative loss of manpower due to 𝑁𝑇𝑟𝑎𝑛𝑠.(𝑇) transfer decisions is  

  

𝑋̅𝑁𝑇𝑟𝑎𝑛𝑠.(𝑇) = 𝐸(𝑋𝑖)𝐸(𝑁𝑇𝑟𝑎𝑛𝑠.(𝑇)) = 𝜇2𝐸(𝑇)[𝐸(𝑌𝐴𝑗) + 𝐸(𝑌𝐵𝑗)] 

5. Hazard rate at T =
𝑙(𝑡)

1−𝐿(𝑡)
                                                                   

 

               =𝑃 (𝑡 < 𝑇 < 𝑡 +
𝑑𝑡

𝑇
> 𝑡) =

𝐿(𝑡+𝑑𝑡)−𝐿(𝑡)

1−𝐿(𝑡)
                                                        

6. Average residual time for recruitment given that there is no recruitment upto time t. 

       = 𝐸(𝑇 − 𝑡/𝑇 > 𝑡) =
∫ [1−𝐿(𝑢)] 𝑑𝑢

∞

𝑡

1−𝐿(𝑡)
                             

 

CONCLUSION 
The manpower planning model developed in this paper is new in the context of correlated inter-policy decision time. 

This model can be used to plan for the adequate provision of manpower for the organization at graduate, 

professional and management levels in the context of attrition. There is a scope for studying the applicability of the 

designed model using simulation. Further, by collecting relevant data, one can test the goodness of fit for the 

distributions assumed in this paper. The results given in this paper enable one to estimate manpower gap in future, 

thereby facilitating the assessment of manpower profile in predicting future manpower development not only on 

industry but also in a wider domain. 
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